20 research outputs found

    DeepInf: Social Influence Prediction with Deep Learning

    Full text link
    Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends' behaviors and are in turn influenced by them. Consequently, an effective social influence prediction for each user is critical for a variety of applications such as online recommendation and advertising. Conventional social influence prediction approaches typically design various hand-crafted rules to extract user- and network-specific features. However, their effectiveness heavily relies on the knowledge of domain experts. As a result, it is usually difficult to generalize them into different domains. Inspired by the recent success of deep neural networks in a wide range of computing applications, we design an end-to-end framework, DeepInf, to learn users' latent feature representation for predicting social influence. In general, DeepInf takes a user's local network as the input to a graph neural network for learning her latent social representation. We design strategies to incorporate both network structures and user-specific features into convolutional neural and attention networks. Extensive experiments on Open Academic Graph, Twitter, Weibo, and Digg, representing different types of social and information networks, demonstrate that the proposed end-to-end model, DeepInf, significantly outperforms traditional feature engineering-based approaches, suggesting the effectiveness of representation learning for social applications.Comment: 10 pages, 5 figures, to appear in KDD 2018 proceeding

    Cross-Modal Interaction Networks for Query-Based Moment Retrieval in Videos

    Full text link
    Query-based moment retrieval aims to localize the most relevant moment in an untrimmed video according to the given natural language query. Existing works often only focus on one aspect of this emerging task, such as the query representation learning, video context modeling or multi-modal fusion, thus fail to develop a comprehensive system for further performance improvement. In this paper, we introduce a novel Cross-Modal Interaction Network (CMIN) to consider multiple crucial factors for this challenging task, including (1) the syntactic structure of natural language queries; (2) long-range semantic dependencies in video context and (3) the sufficient cross-modal interaction. Specifically, we devise a syntactic GCN to leverage the syntactic structure of queries for fine-grained representation learning, propose a multi-head self-attention to capture long-range semantic dependencies from video context, and next employ a multi-stage cross-modal interaction to explore the potential relations of video and query contents. The extensive experiments demonstrate the effectiveness of our proposed method.Comment: Accepted by SIGIR 2019 as a full pape

    SCE: Scalable Network Embedding from Sparsest Cut

    Full text link
    Large-scale network embedding is to learn a latent representation for each node in an unsupervised manner, which captures inherent properties and structural information of the underlying graph. In this field, many popular approaches are influenced by the skip-gram model from natural language processing. Most of them use a contrastive objective to train an encoder which forces the embeddings of similar pairs to be close and embeddings of negative samples to be far. A key of success to such contrastive learning methods is how to draw positive and negative samples. While negative samples that are generated by straightforward random sampling are often satisfying, methods for drawing positive examples remains a hot topic. In this paper, we propose SCE for unsupervised network embedding only using negative samples for training. Our method is based on a new contrastive objective inspired by the well-known sparsest cut problem. To solve the underlying optimization problem, we introduce a Laplacian smoothing trick, which uses graph convolutional operators as low-pass filters for smoothing node representations. The resulting model consists of a GCN-type structure as the encoder and a simple loss function. Notably, our model does not use positive samples but only negative samples for training, which not only makes the implementation and tuning much easier, but also reduces the training time significantly. Finally, extensive experimental studies on real world data sets are conducted. The results clearly demonstrate the advantages of our new model in both accuracy and scalability compared to strong baselines such as GraphSAGE, G2G and DGI.Comment: KDD 202

    Adversarial Bipartite Graph Learning for Video Domain Adaptation

    Full text link
    Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area due to the significant spatial and temporal shifts across the source (i.e. training) and target (i.e. test) domains. As such, recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations and strengthen the feature transferability are not highly effective on the videos. To overcome this limitation, in this paper, we learn a domain-agnostic video classifier instead of learning domain-invariant representations, and propose an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions with a network topology of the bipartite graph. Specifically, the source and target frames are sampled as heterogeneous vertexes while the edges connecting two types of nodes measure the affinity among them. Through message-passing, each vertex aggregates the features from its heterogeneous neighbors, forcing the features coming from the same class to be mixed evenly. Explicitly exposing the video classifier to such cross-domain representations at the training and test stages makes our model less biased to the labeled source data, which in-turn results in achieving a better generalization on the target domain. To further enhance the model capacity and testify the robustness of the proposed architecture on difficult transfer tasks, we extend our model to work in a semi-supervised setting using an additional video-level bipartite graph. Extensive experiments conducted on four benchmarks evidence the effectiveness of the proposed approach over the SOTA methods on the task of video recognition.Comment: Proceedings of the 28th ACM International Conference on Multimedia (MM '20

    DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendation

    Full text link
    Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems since it can model rich context information in user-item interactions. Graph neural network is able to encode this rich context information through propagation on the graph. However, existing heterogeneous graph neural networks neglect entanglement of the latent factors stemming from different aspects. Moreover, meta paths in existing approaches are simplified as connecting paths or side information between node pairs, overlooking the rich semantic information in the paths. In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-NN recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network. In particular, we use meta relations to decompose high-order connectivity between node pairs and propose a disentangled embedding propagation layer which can iteratively identify the major aspect of meta relations. Our model aggregates corresponding aspect features from each meta relation for the target user/item. With different layers of embedding propagation, DisenHAN is able to explicitly capture the collaborative filtering effect semantically. Extensive experiments on three real-world datasets show that DisenHAN consistently outperforms state-of-the-art approaches. We further demonstrate the effectiveness and interpretability of the learned disentangled representations via insightful case studies and visualization.Comment: Accepted at CIKM202

    Multivariate Relations Aggregation Learning in Social Networks

    Full text link
    Multivariate relations are general in various types of networks, such as biological networks, social networks, transportation networks, and academic networks. Due to the principle of ternary closures and the trend of group formation, the multivariate relationships in social networks are complex and rich. Therefore, in graph learning tasks of social networks, the identification and utilization of multivariate relationship information are more important. Existing graph learning methods are based on the neighborhood information diffusion mechanism, which often leads to partial omission or even lack of multivariate relationship information, and ultimately affects the accuracy and execution efficiency of the task. To address these challenges, this paper proposes the multivariate relationship aggregation learning (MORE) method, which can effectively capture the multivariate relationship information in the network environment. By aggregating node attribute features and structural features, MORE achieves higher accuracy and faster convergence speed. We conducted experiments on one citation network and five social networks. The experimental results show that the MORE model has higher accuracy than the GCN (Graph Convolutional Network) model in node classification tasks, and can significantly reduce time cost.Comment: 11 pages, 6 figure

    Zero-Shot Multi-View Indoor Localization via Graph Location Networks

    Full text link
    Indoor localization is a fundamental problem in location-based applications. Current approaches to this problem typically rely on Radio Frequency technology, which requires not only supporting infrastructures but human efforts to measure and calibrate the signal. Moreover, data collection for all locations is indispensable in existing methods, which in turn hinders their large-scale deployment. In this paper, we propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization. GLN makes location predictions based on robust location representations extracted from images through message-passing networks. Furthermore, we introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version, which exploits a novel mechanism Map2Vec to train location-aware embeddings and make predictions on novel unseen locations. Our extensive experiments show that the proposed approach outperforms state-of-the-art methods in the standard setting, and achieves promising accuracy even in the zero-shot setting where data for half of the locations are not available. The source code and datasets are publicly available at https://github.com/coldmanck/zero-shot-indoor-localization-release.Comment: Accepted at ACM MM 2020. 10 pages, 7 figures. Code and datasets available at https://github.com/coldmanck/zero-shot-indoor-localization-releas

    Antioxidant properties of Rubus discolor leaf extracts

    No full text

    XFlow: Cross-Modal Deep Neural Networks for Audiovisual Classification.

    No full text
    In recent years, there have been numerous developments toward solving multimodal tasks, aiming to learn a stronger representation than through a single modality. Certain aspects of the data can be particularly useful in this case--for example, correlations in the space or time domain across modalities--but should be wisely exploited in order to benefit from their full predictive potential. We propose two deep learning architectures with multimodal cross connections that allow for dataflow between several feature extractors (XFlow). Our models derive more interpretable features and achieve better performances than models that do not exchange representations, usefully exploiting correlations between audio and visual data, which have a different dimensionality and are nontrivially exchangeable. This article improves on the existing multimodal deep learning algorithms in two essential ways: 1) it presents a novel method for performing cross modality (before features are learned from individual modalities) and 2) extends the previously proposed cross connections that only transfer information between the streams that process compatible data. Illustrating some of the representations learned by the connections, we analyze their contribution to the increase in discrimination ability and reveal their compatibility with a lip-reading network intermediate representation. We provide the research community with Digits, a new data set consisting of three data types extracted from videos of people saying the digits 0-9. Results show that both cross-modal architectures outperform their baselines (by up to 11.5%) when evaluated on the AVletters, CUAVE, and Digits data sets, achieving the state-of-the-art results
    corecore